Abstract

There is great interest in developing colloidal delivery systems to enhance the water solubility and oral bioavailability of curcumin, which is a hydrophobic nutraceutical claimed to have several health benefits. In this study, a natural emulsifier was used to form sophorolipid-coated curcumin nanoparticles. The curcumin was loaded into sophorolipid micelles using a pH-driven mechanism based on the decrease in curcumin solubility at lower pH values. The sophorolipid-coated curcumin nanoparticles formed using this mechanism were relatively small (61 nm) and negatively charged (-41 mV). The nanoparticles also had a relatively high encapsulation efficiency (82%) and loading capacity (14%) for curcumin, which was present in an amorphous state. Both in vitro and in vivo studies showed that the curcumin nanoparticles had an appreciably higher bioavailability than that of free curcumin crystals (2.7-3.6-fold), which was mainly attributed to their higher bioaccessibility. These results may facilitate the development of natural colloidal systems that enhance the oral bioavailability and bioactivity of curcumin in food, dietary supplements, and pharmaceutical products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.