Abstract

We derive the linear Langevin equation that describes the behavior of the fluctuations of the order parameter of the chiral phase transition above the critical temperature by applying the projection operator method to the Nambu–Jona-Lasinio model at finite temperature and density. The Langevin equation relaxes exhibiting oscillation, reveals thermalization and converges to the equilibrium state consistent with the mean-field approximation as time goes on. With the help of this Langevin equation, we further investigate the relaxation of the critical fluctuations. The relaxation time of the critical fluctuations increases at speed as the temperature approaches toward the critical temperature because of the critical slowing down. The critical slowing down is enhanced as the chemical potential increases because of the Pauli blocking. Furthermore, we find another enhancement of the critical slowing down around the tricritical point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.