Abstract

Chitosan/g-C3N4/TiO2 (CS/CNT) nanofibers were fabricated by electrospinning technique for Cr(VI) removal through the adsorption and photocatalytic processes. The effects of crucial factors in the adsorption process including contact time (0–1440 min), pH (1–7), initial concentration of Cr(VI) (20–800 mg/L) were investigated. The photocatalytic experiment was executed in a photochemical reactor with an 800 W xenon lamp to simulate visible light. In adsorption process, at pH = 2, the adsorption capacities of chitosan (CS) nanofibers, CS/CNT10:1 (CS : g-C3N4/TiO2 = 10:1) nanofibers and CS/CNT5:1 nanofibers were 20.8, 165.3 and 68.9 mg/g, respectively, suggesting the addition of g-C3N4/TiO2 (CNT) could notably enhance the acid resistance of CS and widen its practical application. Under visible-light irradiation, the removal efficiency of Cr(VI) using CS/CNT nanofibers was appreciably improved, which was about 50 % higher than that of pure adsorption, indicating that the CS/CNT nanofibers exhibited the effective synergistic effect of adsorption and photocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.