Abstract

Dip-coated double-wall carbon nanotubes (DWCNTs) and titanium dioxide (TiO2) sol have been prepared and smeared onto the tip of a conductive iron needle which serves as the corona discharge anode in a needle–cylinder corona system. Compared with the discharge electrode of a CNT-coated needle tip, great advancements have been achieved with the TiO2/CNT-coated electrode, including higher discharge current, ionic wind velocity, and energy conversion efficiency, together with lower corona onset voltage and power consumption. Several parameters related to the discharge have been phenomenologically and mathematically studied for comparison. Thanks to the morphology reorientation of the CNT layer and the anti-oxidation of TiO2, better performance of corona discharge induced wind generation of the TiO2/CNT-coated electrode system has been achieved. This novel decoration may provide better thoughts about the corona discharge application and wind generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call