Abstract

This paper is the first study on the extraction of Cu, Ni, and Ga from Light Emitting Diode (LED) waste by bio-hydrometallurgy technology. LEDs have a high concentration of metals and various types of brominated flame retardants (BFRs). This study demonstrates the need for strains with resistance to high concentrations of LED powder. The adaptation of Acidithiobacillus ferrooxidans to LED powder was done through a serial acclimatisation procedure in five steps of 5, 10, 15, 20, and 25 g/l. The results indicated that the heavy metals tolerance of Acidithiobacillus ferrooxidans decreased as the pulp density increased from 5 to 20 g/l. The pulp density > 20 g/l of LED powder caused a toxic response resulting in an evident inhibitory effect on bacterial activity. In the presence of 20 g/l of LED powder, adapted Acidithiobacillus ferrooxidans exhibits higher Fe3+ level, cell amount, ORP, and lower pH than the non-adapted cells. The recovery of copper, nickel, and gallium were higher by adapted bacteria compared to non-adapted bacteria. The adapted A. ferrooxidans leached approximately 84%, 96%, and 60%, copper, nickel, and gallium, respectively. It could be concluded that adaptation can be an effective tool for enhancement of copper, nickel, and gallium bioleaching from LED powder and adapted Acidithiobacillus ferrooxidans would be a suitable strain in LED waste bioleaching.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call