Abstract

A novel K-promoted Cu-Fe bimodal derived catalyst was designed to optimize the catalytic activity and higher alcohols selectivity in higher alcohols synthesis (HAS). The characterization results indicated that the Cu-Fe bimodal derived catalyst presented the bimodal pore structures. The adding of K promoter increased the BET surface area and promoted the dispersion of Cu and Fe species in the bimodal pores without destroying the bimodal structure, whereas the excessive adding of potassium resulted in easily the aggregation of bimetal active species. Incorporation of moderate K content enhanced the reduction of Cu and Fe species and promoted the formation of active bimetal species for HAS, while the bimodal derived catalyst with excessive K content restrained the reduction of bimetal particles, decreasing the catalytic activity for higher alcohols synthesis. In addition, the gradual increasing of K content in the Cu-Fe bimodal derived catalyst strengthened the interaction of K and bimetal active species, which was combined with the “confinement effect” of bimodal pore structures, shifting product distribution towards C2+OH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.