Abstract

Mixed matrix membranes, MMMs, consisting of variable loads of a porous polymer network, PPN, within an o-hydroxipolyamide, HPA (6FCl-APAF, made from the reaction between 2,2-bis[4-chlorocarbonylphenyl)hexafluoropropane, 6FCl, and 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane, APAF), have been thermally treated to induce the rearrangement of HPA to a polybenzoxazole (β-TR-PBO). HPA is 6FCl-APAF was loaded with a PPN synthetized, by us, by combining triptycene (TRP) and trifluoroacetophenone (TFAP). Mechanical, thermal and morphological properties of the membranes have been determined.CO2/CH4 selectivity of MMMs decreased slightly both when the PPN load was augmented and when thermal rearrangement took place. The changes in selectivity can be attributed mostly to solubility effects for β-TR-MMMs and to diffusive effects for the MMM from neat HPA. CO2 and CH4 permeabilities increased to the 2008 Robesońs upper bond for an optimal 30% PPN load both before and after thermal rearrangement. These relatively good permselectivities are explained in terms of compaction, rigidity, fractional free volumes and filling-matrix interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.