Abstract
Many prey species have evolved defensive colour patterns to avoid attacks. One type of camouflage, disruptive coloration, relies on contrasting patterns that hinder predators' ability to recognize an object. While high contrasts are used to facilitate detection in many visual communication systems, they are thought to provide misleading information about prey appearance in disruptive patterns. A fundamental tenet in disruptive coloration theory is the principle of 'maximum disruptive contrast', i.e. disruptive patterns are more effective when higher contrasts are involved. We tested this principle in highly contrasting stripes that have often been described as disruptive patterns. Varying the strength of chromatic contrast between stripes and adjacent pattern elements in artificial butterflies, we found a strong negative correlation between survival probability and chromatic contrast strength. We conclude that too high a contrast leads to increased conspicuousness rather than to effective camouflage. However, artificial butterflies that sported contrasts similar to those of the model species Limenitis camilla survived equally well as background-matching butterflies without these stripes. Contrasting stripes do thus not necessarily increase predation rates. This result may provide new insights into the design and characteristics of a range of colour patterns such as sexual, mimetic and aposematic signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society B: Biological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.