Abstract

This paper describes a study on the charge transport in a composite of liquid-exfoliated graphene nanoparticles (GNPs) and a polythiophene semiconducting polymer. While the former component is highly conducting, although it consists of isolated nanostructures, the latter offers an efficient charge transport path between the individual GNPs within the film, overall yielding enhanced charge transport properties of the resulting bi-component system. The electrical characteristics of the composite layers were investigated by means of measurements of time-of-flight photoconductivity and transconductance in field-effect transistors. In order to analyze both phenomena separately, charge density and charge mobility contributions to the conductivity were singled out. With the increasing GNP concentration, the charge mobility was found to increase, thereby reducing the time spent by the carriers on the polymer chains. In addition, for GNP loading above 0.2 % (wt.), an increase of free charge density was observed that highlights an additional key role played by doping. Variable-range hopping model of a mixed two- and three-dimensional transport is explained using temperature dependence of mobility and free charge density. The temperature variation of free charge density was related to the electron transfer from polythiophene to GNP, with an energy barrier of 24 meV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.