Abstract

Microbe-assisted phytoextraction shows a potential for the remediation of metal-contaminated soils. The aim of this study was to isolate, characterize, and evaluate the potential of endophytic bacteria in improving plant growth and metal uptake by Cd-hyperaccumulators-Amaranthus hypochondriacus and Amaranthus mangostanus. An endophytic bacterial strain JN27 isolated from roots of Zea mays displayed high tolerance and mobilization to Cd, and was identified as Rahnella sp. based on 16S rDNA sequencing. The strain also exhibited multiple plant growth beneficial features including the production of indole-3-acetic acid, siderophore, 1-aminocyclopropane-1-carboxylic acid deaminase and solubilization of insoluble phosphate. Subsequently, a pot trial was performed to elucidate the effects of inoculation with JN27 on plant growth and Cd uptake by A. hypochondriacus, A. mangostanus, Solanum nigrum and Z. mays grown in soils with different levels of Cd (25, 50, 100mgCdkg−1). The results revealed that inoculation with JN27 significantly increased the biomasses of all the tested plants and the Cd concentrations of all the tested plants except Z. mays in both above-ground and root tissues. Moreover, strain JN27 could successfully re-colonized in rhizosphere soils of all the tested plants and root interior of A. hypochondriacus and Z. mays. The present results indicated that the symbiont of A. hypochondriacus (or A. mangostanus) and strain JN27 can effectively improve the Cd uptake by plants and would be a new strategy in microbe-assisted phytoextraction for metal-contaminated soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.