Abstract
Immunotherapy has achieved some success in preclinical and clinical studies, but the immunosuppressive tumor microenvironment (TME) leads to a low response rate of this therapy. In this paper, we describe a calreticulin (CRT) valgus CT-26 tumor cell membranes-coated bacterial whole peptidoglycan (WPG) from P. aeruginosa (CPW/SR) with a high rate of the STING agonist loading. In the construct, WPG from P. aeruginosa (P.WPG) was used as a carrier with the immunoadjuvant function while synergistically promoting the maturation of dendritic cells (DCs) through the delivery of the STING agonist SR-717. CRT valgus tumor cell membranes were identified and internalized by DCs via CRT on the surface. In addition, this construct was able to reverse the immunosuppressive TME in vivo and achieve synergies with radiotherapy by creating a personalized tumor vaccine, therefore achieving more resultful antitumor efficacy. In conclusion, CPW/SR constructed in this paper provides a new approach for achieving efficient cancer immunotherapy and combination therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.