Abstract

We investigate the formation and transport of gas bubbles across a model porous electrode/catalyst using lattice Boltzmann simulations. This approach enables us to systematically examine the influence of a wide range of morphologies, flow velocities, and reaction rates on the efficiency of gas production. By exploring these parameters, we identify critical parameter combinations that significantly contribute to an enhanced yield of gas output. Our simulations reveal the existence of an optimal pore geometry for which the product output is maximized. Intriguingly, we also observe that lower flow velocities improve gas production by leveraging coalescence-induced bubble detachment from the electrode/catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.