Abstract
The efficient storage of materials before bioethanol production could be key to improving pretreatment protocol and facilitating biodegradation, in turn improving the cost-effectiveness of biomass utilization. Biological inoculants were investigated for their effects on ensiling performance, biodegradability of silage materials, and final bioethanol yield from sweet sorghum. Two cellulolytic microbial consortia (CF and PY) were used to inoculate silages of sweet sorghum, with and without combined lactic acid bacteria (Xa), for up to 60 days of ensiling. We found that the consortia notably decreased pH and ammonia nitrogen content while increasing lactic acid/acetic acid ratios. The microbes also functioned in synergy with Xa, significantly reducing lignocellulose content and improving biomass preservation. First-order exponential decay models captured the kinetics of nonstructural carbohydrates and suggested high water-soluble carbohydrate (grams per kilogram dry matter [DM]) preservation potential in PY-Xa (33.48), followed by CF-Xa (30.51). Combined addition efficiently improved enzymatic hydrolysis and enhanced bioethanol yield, and sweet sorghum treated with PY-Xa had the highest ethanol yield (28.42 g L-1). Thus, combined bioaugmentation of synergistic microbes provides an effective method of improving biomass preservation and bioethanol production from sweet sorghum silages. IMPORTANCE Ensiling is an effective storage approach to ensure stable year-round supply for downstream biofuel production; it offers combined facilities of storage and pretreatment. There are challenges in ensiling sweet sorghum due to its coarse structure and high fiber content. This study provides a meaningful evaluation of the effects of adding microbial consortia, with and without lactic acid bacteria, on changes in key properties of sweet sorghum. This study highlighted the bioaugmented ensiling using cellulolytic synergistic microbes to outline a cost-effective strategy to store and pretreat sweet sorghum for bioethanol production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.