Abstract

Surface-modified hollow-fiber membranes were prepared by radiation-induced grafting of an epoxy-group-containing monomer, glycidylmethacrylate (GMA), onto a polyethylene-based fiber (PE-fiber). The epoxy ring of GMA was opened by introduction of diethylamine (DEA). The bacterial adhesivity to this material (DEA-fiber) was tested by immersion into a nitrifying bacterial suspension. The initial adhesion rates and the amount of attached bacteria of the DEA-fiber were 6-10-fold and 3-fold greater than those of the PE fiber, respectively. A membrane-aerated biofilm reactor (MABR) composed of DEA fibers was developed for partial nitrification with nitrite accumulation. Prior to the nitrification test, it was confirmed that the oxygen supply rate (OSR) was proportional to air pressure up to 100 kPa, allowing easy control of oxygen supply. Stable nitrite accumulation was observed in the partial nitrification test at a fixed oxygen supply throughout the operation period, indicating that oxygen was consumed only by ammonia oxidizers. Furthermore, it was demonstrated that oxygen utilization efficiency (OUE) in the ammonia oxidation process was nearly 100% after 300 h incubation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.