Abstract

Recently, LiNO3-based electrolytes using tetraglyme (G4) solvent (LiNO3/G4) have attracted increasing attention for non-aqueous rechargeable Li-air (O2) batteries (LAB) because of the bifunctional effect of NO3− anion as both redox mediator (RM) at air electrode and additive to form Li2O layer on the surface of Li metal negative electrode (NE), which suppresses Li dendrite growth and electrolyte decomposition. However, the dissociation degree of LiNO3 salt was quite low, which causes to low ionic conductivity and the above effects of NO3− would not work effectively in the electrolyte. In this study, we tried to apply dual solvent system to the LiNO3/G4 electrolyte. Namely, acetonitrile and dimethyl sulfoxide (DMSO) with relatively high dielectric constant and low viscosity were mixed with G4 solvent to increase the number per volume and mobility of Li+ and NO3− as carrier ions for reduction of the large overpotential during charge process and enhancement of the power density. The DMSO mixed electrolyte greatly reduced the large charge overpotential and relative stable operation for the LAB (Li ∣ O2) cells. Furthermore, the Li2O passivation layer formed by NO3− anion effectively suppressed the electrolyte decomposition at Li metal NE. These effects were enhanced especially at higher rate of discharge/charge operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.