Abstract

4-Allylpyrocatechol (APC), a major active compound of Piper betle, possesses strong antimicrobial activity. However, the water-insoluble property of APC limits its clinical and pharmaceutical use. To solve this problem, APC loaded polymeric micelles (PMAC) was fabricated using the thin-film hydration method. Nanoparticles of PMAC were characterized using a photon correlation spectrophotometer and transmission electron microscope (TEM). Antibiofilm activity of PMAC was investigated using crystal violet assay and confocal laser scanning microscopy (CLSM). Cytotoxic effects of PMAC on normal cells were investigated using MTT assay. The results demonstrate that a ratio of APC to the polymer plays an important role in the physicochemical characteristics of PMAC. The most suitable PMAC formulation having a small particle size (38.8 ± 1.4nm), narrow size distribution (0.28 ± 0.10), a high negative zeta potential (-16.43 ± 0.55mV), and high entrapment efficiency (86.33 ± 14.27%) can be obtained from the ratio 1:4. The water solubility of this PMAC is significantly improved, approximately 1,000-fold higher than the unentrapped APC. TEM images demonstrate that PMAC is spherical in shape. The inhibitory effects of PMAC (1.5mg APC/mL) against Streptococcus intermedius and Streptococcus mutans biofilms are significantly stronger than chlorhexidine (0.06mg/mL). Images from CLSM demonstrate the destruction and thickness reduction of the pathogenic biofilms after contacting with PMAC. The MTT assay confirms that PMAC at this concentration is non-toxic to normal cells. These results obviously indicate that PMAC is a promising natural and harmless antimicrobial agent suitable for use in the oral cavity for inhibition of pathogenic bacterial biofilms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.