Abstract

The commonly used antibiotic ciprofloxacin (CIP) can significantly inhibit and interfere with the anaerobic digestion (AD) performance. This work was developed to explore the effectiveness and feasibility of nano iron-carbon composites to simultaneously enhance methane production and CIP removal during AD under CIP stress. The results demonstrated that when the nano-zero-valent iron (nZVI) content immobilized on biochar (BC) was 33% (nZVI/BC-33), the CIP degradation efficiency reached 87% and the methanogenesis reached 143 mL/g COD, both higher than Control. Reactive oxygen species analysis demonstrated that nZVI/BC-33 could effectively mitigate microorganisms subjected to the dual redox pressure from CIP and nZVI, and reduce a series of oxidative stress reactions. The microbial community depicted that nZVI/BC-33 enriched functional microorganisms related to CIP degradation and methane production and facilitated direct electron transfer processes. Nano iron-carbon composites can effectively alleviate the stress of CIP on AD and enhance methanogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.