Abstract

The third-order nonlinear susceptibility χ(3) of asymmetrically coupled quantum well (ACQW) structure is calculated by employing a V-type three-level model. The efficiency of absorptive optical nonlinearity, which we define as the ratio of the third-order nonlinear susceptibility χ(3) to the linear absorptive coefficient α0, is analysed for different electronic coherence oscillation frequencies. We show that the efficiency is enhanced with the increase of the electronic coherence oscillation frequency between the two wells but is degenerated as that of a single quantum well when the electronic coherence oscillation frequency is zero. Compared with single quantum well, the ACQW designed has the property of nonlinear absorption and dispersion depending strongly on the external electric field along the growth direction. We predict that ACQW structures can provide both high efficiency limiters and controllable optical Kerr switch in future communication systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.