Abstract

Cu-Cu joints have been adopted for ultra-high density of packaging for high-end devices. However, the processing temperature must be kept relatively low, preferably below 300 °C. In this study, a novel surface modification technique, quenching treatment, was applied to achieve Cu-to-Cu direct bonding using (111)-oriented nanotwinned Cu. The quenching treatment enabled grain growth across the Cu-Cu bonding interface at 275 °C. During quenching treatment, strain energy was induced in the Cu film, resulting in a wrinkled surface morphology. To analyze the strain energy, we utilized an electron backscattered diffraction system to obtain crystallographic information and confirmed it using kernel average misorientation analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.