Abstract

The interaction between ammonia and the benzene radical cation has been investigated by gas-phase studies of mass selected ion clusters {C(6)H(6)-(NH(3))(n=0-8)}(+) via tandem quadrupole mass spectrometry and through calculations. Experiments show a special stability for the cluster ion that contains four ammonias: {C(6)H(6)(NH(3))(4)}(+). Calculations provide evidence that the first ammonia forms a weak dative bond to the cyclohexadienyl radical cation, {C(6)H(6)-NH(3)}(+), where there is a transfer of electrons from ammonia to benzene. Additional solvating ammonia molecules form stabilizing hydrogen bonds to the ring-bound ammonia {C(6)H(6)-NH(3)}(+).(NH(3))(n), which cause cooperative changes in the structure of the cluster complex. Free ammonia is a weak hydrogen bond donor, but electron transfer from NH(3) to the benzene ring that strengthens the dative bond will increase the hydrogen acidity and the strength of the cluster hydrogen bonds to the added ammonia. A progressive "tightening" of this dative bond is observed upon addition of the first, second, and third ammonia to give a cluster stabilized by three N-(+)H x N hydrogen bonds. This shows that the energetic cost of tightening the dative bond is recovered with dividends in the formation of stable cluster hydrogen bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.