Abstract

Modification of the sterol catabolism pathway in mycobacteria may result in the accumulation of some valuable steroid pharmaceutical intermediates, such as 9α-hydroxy-4-androstene-3,17-dione (9-OHAD). In previous work, sigma factor D (SigD) was identified as a negative factor of the 9-OHAD production in Mycobacterium neoaurum. Here, the deficiency of rip1 putatively coding for a regulated intramembrane proteolysis metalloprotease (Rip1), which could cleave the negative regulator of SigD (anti-SigD), enhanced the transcription of some key genes (choM1, kshA, and hsd4A) in the sterol catabolic pathway. Furthermore, the deletion of rip1 increased the consumption of phytosterols by 37.8% after 96 h of growth in M. neoaurum. The production of 9-OHAD in the engineered M. neoaurumΔkstD1ΔkstD2ΔkstD3Δrip1 (MnΔk123Δrip1) strain was ultimately increased by 27.3% compared to that in its parental strain M. neoaurumΔkstD1ΔkstD2ΔkstD3 (MnΔk123). This study further confirms the important role of SigD-related factors in the catabolism of sterols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.