Abstract
A material’s properties must be continuously improved to meet the demands of extreme conditions in high-temperature applications. It is demonstrated that γ-γ’ Co-based superalloys could surpass the yield stress of Ni-based superalloys at high temperature due to the γ-γ’ structure. The powders were subjected to a harmonic modification in order to refine the grain structure on the surface and to activate the sintering process. This study examines how harmonic structure affects microstructure and mechanical properties at high temperatures. Spark Plasma Sintering (SPS) was used for consolidation to maintain the ultrafine grain size microstructure of the powder. Compression tests were conducted from room temperature (RT) to 750 °C to assess the mechanical properties of the material. Yield stress values obtained from harmonic structures are four times higher than those obtained from cast alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.