Abstract

The production of α,ω-dicarboxylic acids (DCAs) by whole-cell biocatalysis is often limited by cofactor regeneration. Here, ω-oxidation pathway genes (monooxygenase, alcohol dehydrogenase, and aldehyde dehydrogenase) were coexpressed with a xylose reductase (XR) gene to regenerate cofactors in an engineered Escherichia coli strain that cometabolizes glucose and xylose. The resulting strain exhibited a 180% increase in DCA production compared with the control strain without XR, and produced xylitol in the presence of xylose. Expression of monooxygenase and XR without other ω-oxidation pathway genes resulted in an additional increase in tetradecanedioic acid concentration and a substrate conversion of 95%, which was 198% higher than that associated with the control strain. The expression of XR helped the system to regenerate and balance the cofactors thereby achieving maximum substrate conversion efficiency. It could serve as an efficient platform for the industrial production of α,ω-DCAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.