Abstract

We present measurements of silicon (Si) metal-oxide-semiconductor (MOS) nanostructures that are fabricated using a process that facilitates essentially arbitrary gate geometries. Stable Coulomb-blockade behavior showing single-period conductance oscillations that are consistent with a lithographically defined quantum dot is exhibited in several MOS quantum dots with an open-lateral quantum-dot geometry. Decreases in mobility and increases in charge defect densities (i.e., interface traps and fixed-oxide charge) are measured for critical process steps, and we correlate low disorder behavior with a quantitative defect density. This work provides quantitative guidance that has not been previously established about defect densities and their role in gated Si quantum dots. These devices make use of a double-layer gate stack in which many regions, including the critical gate oxide, were fabricated in a fully qualified complementary metal-oxide semiconductor facility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.