Abstract

We report a systematic study about the effect of cobalt concentration in the growth solution over the crystallization, growth, and optical properties of hydrothermally synthesized Zn1−xCoxO [0 ≤ x ≤ 0.40, x is the weight (wt.) % of Co in the growth solution] nanorods. Dilute Co concentration of 1 wt. % in the growth solution enhances the bulk crystal quality of ZnO nanorods, and high wt. % leads to distortion in the ZnO lattice that depresses the crystallization, growth as well as the surface structure quality of ZnO. Although, Co concentration in the growth solution varies from 1 to 40 wt. %, the real doping concentration is limited to 0.28 at. % that is due to the low growth temperature of 80 °C. The enhancement in the crystal quality of ZnO nanorods at dilute Co concentration in the solution is due to the strain relaxation that is significantly higher for ZnO nanorods prepared without, and with high wt. % of Co in the growth solution. Second harmonic generation is used to investigate the net dipole distribution from these coatings, which provides detailed information about bulk and surface structure quality of ZnO nanorods at the same time. High quality ZnO nanorods are fabricated by a low-temperature (80 °C) hydrothermal synthesis method, and no post synthesis treatment is needed for further crystallization. Therefore, this method is advantageous for the growth of high quality ZnO coatings on plastic substrates that may lead toward its application in flexible electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call