Abstract

In this study, Strontium (Sr)-doped perovskite lanthanum manganite (La1−xSrxMnO3) nanoparticles were prepared by the sol–gel method and used as electrode materials of supercapacitors. Microstructures, morphologies, and electrochemical properties of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), a transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET) surface area measurements, cyclic voltammetry (CV), and galvanostatic charge/discharge (GCD) cycling. Investigations demonstrated that the La0.85Sr0.15MnO3 nanoparticles had a maximum specific capacitance of 185.5 F/g at a current density of 0.5 A/g and a low charge transfer resistance (0.38 Ω) in 3 M KOH aqueous electrolyte solutions. La0.85Sr0.15MnO3 electrode yields the highest capacitance behavior because of the larger specific surface area, lower charge transfer resistance, and higher concentration of oxygen vacancy. This result demonstrates that Sr doping significantly improved the electrochemical properties of the LaMnO3 system. The anion-intercalation mechanism was examined by a charge–discharge process. This provides a promising electrode material for supercapacitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call