Abstract

Methicillin resistant Staphylococcus aureus (MRSA) induced skin infections have become a challenging problem due to the escalating antibiotic resistance. Carvacrol (CAR) has been reported to be effective against MRSA. However, due to its characteristics, CAR exhibits low skin retention. In this study, CAR was formulated into site-specific nanoparticle (NPs) delivery system using poly(ε-caprolactone) (PCL), following incorporation into a hydrogel matrix to facilitate dermal delivery. The release study exhibited significantly higher release of CAR from PCL NPs in the presence of bacterial lipase, highlighting its potential for differential delivery. Moreover, encapsulation of CAR in PCL NPs resulted in a two-fold increase in its anti-MRSA activity. Dermatokinetic studies revealed that the NPs loaded hydrogel was able to enhance skin retention of CAR after 24 h (83.29 ± 3.15%), compared to free CAR-loaded hydrogel (0.85 ± 0.14%). Importantly, this novel approach exhibited effective antimicrobial activity in an ex-vivo skin infection model. Hence, these findings have proven the concept that the loading of CAR into a responsive NPs system can lead to sustained antimicrobial effect at the desired site, and may provide a novel effective approach for treatment of MRSA induced skin infections. However, further studies must be conducted to investigate in-vivo efficacy of the developed system in an appropriate infection model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.