Abstract

The accurate migration of seismic data is conditional on the parameters which are nominated. The effective velocity used in residual processing for migration is small compared to the original migration velocity. Considering traveltime computation is a significant part of seismic imaging algorithms. Conventional implementation of Kirchhoff migration is essential for precomputing a traveltime table from the categories involving traditional ray-tracing methods and finite difference eikonal solvers. In this paper, we examine the accuracy using, the eikonal solver and paraxial ray tracing traveltime computation in pre-stack Kirchhoff depth migration. This hybrid traveltime technique can be applied to a variety of problems related to faults, fractures, and complex region. To evaluate the relevance of this identical traveltime technique, we applied on a Marmousi data set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.