Abstract

The cobalt ferrite (CoFe2O4) nanoparticle sensors, synthesized using cost-effective sol-gel auto-combustion method, are irradiated with 2 and 5 kGy γ-doses. Effect of γ-irradiation on the structure, morphology and porosity is studied initially and in the later stage, methanol, acetone, ammonia, ethanol and toluene volatile organic gases are exposed for monitoring their selectivity and sensitivity with pristine and γ-irradiated CoFe2O4 nanoparticle-pellet sensors. The 5 kGy γ-irradiated CoFe2O4 sensor reveals 70% response for ammonia (100 ppm) gas, with high selectivity and room-temperature chemical and environmental stabilities. For knowing the changes in the structure, morphology, porosity and gas sensing performance of CoFe2O4 sensors on γ-irradiation theoretical model has also been proposed and explored. Proposed γ-irradiation approach can be used for enhancing the sensitivity of other gas sensors at room-temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.