Abstract

HoCrO3, Ho0.67Gd0.33CrO3, and GdCrO3 bulk powder samples were prepared by citrate route. The phase purity and the structural properties of the samples were examined by x-ray diffraction and Raman spectroscopic measurements. The dc magnetization data revealed that the Cr3+ ordering temperatures (Néel temperature) for the HoCrO3, Ho0.67Gd0.33CrO3, and GdCrO3 samples are 140 K, 148 K, and 167 K, respectively, while the ac magnetization data revealed that the rare-earth (Ho) ordering occurs at ∼8 K for HoCrO3 and Ho0.67Gd0.33CrO3 samples. Temperature-induced magnetization reversal and spin reorientation were observed in GdCrO3 bulk sample, which depends on applied magnetic field and disappears at ∼1500 Oe and 500 Oe, respectively. By fitting the dc magnetic data with Curie-Weiss law, the effective magnetic moments were calculated to be 11.66 μB, 10.23 μB, and 9.90 μB for the HoCrO3, Ho0.67Gd0.33CrO3, and GdCrO3 samples, respectively. The isothermal magnetization data showed that the magnetic behavior changed from canted antiferromagnetic in low temperature region (below Néel temperature) to paramagnetic at high temperature. It was found that Gd substitution considerably improves the magnetocaloric effect of HoCrO3. Pure GdCrO3 bulk sample showed giant magnetocaloric entropy change (31.6 J/kg K at temperature ∼5 K and at ∼70 kOe), which is higher than that for polycrystalline RMnO3, RCrO3, and RFeO3 bulk powder samples. This renders GdCrO3 useful for potential applications in low-temperature magnetic refrigeration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.