Abstract

We examined double-layered transparent conducting oxide (TCO) anode structures consisted of zinc-doped indium oxide (IZO) over the gallium-doped zinc oxide (GZO), and IZO over the GZO with electrochemical treatment. In bottom type OLEDs, power efficiency and current efficiency were enhanced by a factor of 1.50 and 1.14 at a current density of 10mA/cm2 in IZO/GZO anode structure, compared to the only IZO anode structure. Due to the reduced sheet resistance of the IZO/GZO TCO surface, the operating voltage of the OLED with IZO/GZO anode structure was lowered, leading to mostly enhance power efficiency. More enhanced in power efficiency and current efficiency by a factor of 1.21 and 1.25 at a current density of 10mA/cm2 were achieved in IZO/GZO anode structure with electrochemical treatment, compared to the IZO/GZO anode structure due to the change of the surface morphology of the GZO and the existence of the nanoporous layer beneath the GZO surface by an electrochemical treatment. In total, double-layered IZO/GZO anode structure with electrochemical treatment was revealed at an enhancement factor of 1.80 in power efficiency and 1.42 in current efficiency, compared to the only IZO anode structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call