Abstract
Scale variation is one of the challenges of object detection. Most state-of-the-art object detectors depend on feature pyramid networks (FPN) for multiscale learning to deal with this problem, in which feature fusion is an essential operation. However, feature fusion does not sufficiently address the difficulty of the detection task. This paper presents an enhancement-fusion feature pyramid network (EFPN) to obtain reliable object representations for object detectors. Specifically, it contains a feature enhancement module (FEM) and a bottom-up path module (BPM). The FEM is used to eliminate the negative impact of the uneven distribution of object scales on the model performance. Then, a BPM is proposed to address the fusion inconsistency in the FPN. Additionally, an attention module (Ac) is added to eliminate the information loss in the bottom-up aggregation process. EFPN is evaluated by combining it with state-of-the-art detection methods. Extensive experimental results on two datasets MS-COCO and VOC2007 demonstrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.