Abstract

Two commonly used approximations for the inverse distribution function of the normal distribution are Schmeiser's and Shore's. Both approximations are based on a power transformation of either the cumulative density function (CDF) or a simple function of it. In this note we demonstrate, that if these approximations are presented in the form of the classical one-parameter Box-Cox transformation, and the exponent of the transformation is expressed as a simple function of the CDF, then the accuracy of both approximations may be considerably enhanced, without losing much in algebraic simplicity. Since both approximations are special cases of more general four-parameter systems of distributions, the results presented here indicate that the accuracy of the latter, when used to represent non-normal density functions, may also be considerably enhanced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.