Abstract

An optimally tuned power-law sensor is shown capable of amplifying the signal-to-noise ratio of a sine wave in Gaussian white noise. When associated in parallel arrays, further improvement can be obtained with independent noises injected on these sensors. This form of stochastic resonance in arrays, obtained here with smooth threshold-free nonlinearities, yields signal-to-noise ratio gains above unity in a true regime of added noise for a sine wave in Gaussian white noise, along with a class of nonlinear devices with useful potentialities for noise-aided information processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.