Abstract
Ethanol at initial concentrations between 0.75 and 6 g/l produced a dose-dependent release of the enzymes glutamic-pyruvic-transaminase and sorbitol dehydrogenase (GPT, SDH) from the isolated perfused rat liver. At the concentration of 6 g/l, it also decreased the oxygen consumption and elevated the calcium content of the isolated livers. These toxic effects of ethanol were significantly enhanced in livers, the glutathione content of which had been depleted by pretreatment with phorone. Ethanol-induced toxicity in glutathione-depleted isolated livers could be prevented both by inhibition of alcohol dehydrogenase with 4-methylpyrazole and of xanthine oxidase with allopurinol. In rats, in vivo, 1.6 g/kg ethanol injected intravenously produced a small increase in serum GPT and SDH concentrations 4 h after its administration. This increase in enzyme activities was several-fold higher and longer lasting in rats pretreated with phorone. Glutathione depletion per se did not induce hepatotoxicity in vitro or in vivo. Since glutathione is involved in several lines of defense against oxidative damage, our results of an enhanced susceptibility of glutathione-depleted livers to ethanol toxicity favour the hypothesis that ethanol exerts its hepatotoxic action via an activation of molecular oxygen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.