Abstract

ConspectusThe realization of intelligent, self-powered components and devices exploiting the piezoelectric effect at large scale might greatly contribute to improve our efficiency in using resources, albeit a profound redesign of the materials and architectures used in current electronic systems would be necessary. Piezoelectricity is a property of certain materials to generate an electrical bias in response to a mechanical deformation. This effect enables energy to be harvested from strain and vibration modes, and to sustain the power of actuators, transducers, and sensors in integrated networks, such as those necessary for the Internet of Thing. Polymers, combining structural flexibility with lightweight construction and ease of processing, have been largely used in this framework. In particular, the poly(vinylidene fluoride) [PVDF, (CH2CF2)n] and its copolymers exhibit strong piezoelectric response, are biocompatibile, can endure large strains and can be easily shaped in the form of nanomaterials. Confined geometries, improving crystal orientation and enhancing piezoelectricity enable the fabrication of piezoelectric nanogenerators, which satisfy many important technological requirements, such as conformability, cheap fabrication, self-powering, and operation with low-frequency mechanical inputs (Hz scale). This account reports on piezoelectric polymer nanofibers made by electrospinning. This technique enables the formation of high-aspect-ratio filaments, such as nanowires and nanofibers, through the application of high electric fields (i.e., on the order of hundreds of kV/m) and stretching forces to a polymeric solution. The solution might be charged with functional, organic or inorganic, fillers or dopants. The solution is then fed at a controlled flow rate through a metallic spinneret or forms a bath volume, from which nanofibers are delivered. Fibers are then collected onto metallic surfaces, and upon a change of the collecting geometry, they can form nonwovens, controlled arrays, or isolated features. Nanofibers show unique features, which include their versatility in terms of achievable chemical composition and chemico-physical properties. In addition, electrospinning can be up-scaled for industrial production. Insight into the energy generation mechanism and how the interaction among fibers can be used to enhance the piezoelectric performance are given in this paper, followed by an overview of fiber networks as the active layer in different device geometries for sensing, monitoring, and signal recognition. The use of biodegradable polymers, both natural and synthetic, as critically important building blocks of the roadmap for next-generation piezoelectric devices, is also discussed, with some representative examples. In particular, biodegradable materials have been utilized for applications related to life science, such as the realization of active scaffolds and of electronic devices to be placed in intimate contact with living tissues and organs. Overall, these materials show many relevant properties that can be of very high importance for building next-generation, sustainable energy harvesting, self-rechargeable devices and electronic components, for use in several different fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.