Abstract

The visibility and analyzability of MRI and CT images have a great impact on the diagnosis of medical diseases. Therefore, for low-quality MRI and CT images, it is necessary to effectively improve the contrast while suppressing the noise. In this paper, we propose an enhancement and denoising strategy for low-quality medical images based on the sequence decomposition Retinex model and the inverse haze removal approach. To be specific, we first estimate the smoothed illumination and de-noised reflectance in a successive sequence. Then, we apply a color inversion from 0-255 to the estimated illumination, and introduce a haze removal approach based on the dark channel prior to adjust the inverted illumination. Finally, the enhanced image is generated by combining the adjusted illumination and the de-noised reflectance. As a result, improved visibility is obtained from the processed images and inefficient or excessive enhancement is avoided. To verify the reliability of the proposed method, we perform qualitative and quantitative evaluation on five MRI datasets and one CT dataset. Experimental results demonstrate that the proposed method strikes a splendid balance between enhancement and denoising, providing performance superior to that of several state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.