Abstract
The enhanced discretization and solution techniques are among the advanced computational methods we rely on in simulation and modeling of complex flow problems, including those with moving boundaries and interfaces. The set of enhanced discretization and solution techniques includes those based on enhancement in spatial discretization, enhancement in time discretization, and enhancement in iterative solution of nonlinear and linear equation systems. The enhanced-approximation linear solution technique (EALST) was introduced to increase the performance of the iterative technique used in solution of the linear equation systems when some parts of the computational domain may offer more of a challenge for the iterative method than the others. The EALST can be used for computations based on semi-discrete or space–time formulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.