Abstract

Using a transport model that includes a first-order chiral phase transition between the partonic and the hadronic matter, we study the development of density fluctuations in the matter produced in heavy ion collisions as it undergoes the phase transition, and their time evolution in later hadronic stage of the collisions. Using the coalescence model to describe the production of deuterons and tritons from nucleons at the kinetic freeze out, we find that the yield ratio $ N_\text{t}N_\text{p}/ N_\text{d}^2$, where $N_\text{p}$, $N_\text{d}$, and $N_\text{t}$ are, respectively, the proton, deuteron, and triton numbers, is enhanced if the evolution trajectory of the produced matter in the QCD phase diagram passes through the spinodal region of a first-order chiral phase transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.