Abstract

The conventional photographic process1,2,3 involves several steps: the photogeneration of electron–hole pairs in crystals of a silver halide; the reduction of silver cations to atoms by some fraction of these electrons; the subsequent build up of atoms to give clusters (the ‘latent image’); and the complete reduction by a developer of crystallites having more than a critical number of silver atoms per cluster. The effective quantum yield, Φeff, of photoinduced electron–hole pairs produced per photon absorbed is less than the theoretical limit (Φtheory = 1), because of the fast recombination of some fraction of the pairs1,2,3,4,5,6. Here we describe an approach for enhancing the yield of useful photogenerated electrons, in which the silver halide is doped with formate ions, HCO-2. The dopant ions act as hole scavengers, thus enhancing the escape of electrons from pair recombination. Moreover, the resulting CO˙-2 radical can itself transfer an electron to another silver cation, so raising the theoretical yield to two silver atoms per photon absorbed. This photoinduced bielectronic transfer mechanism is strictly proportional to the light quanta absorbed—the dopant ions do not induce spontaneous reduction of silver cations in the dark—and appears to be close to the theoretical limit of efficiency. The efficiency is constant at all illumination levels and applies to both dye-sensitized and unsensitized crystals. We suggest that this approach is a promising route for improving the performance of photographic emulsions7.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.