Abstract
The co-fermentation of glucose and xylose is one of the issues in decreasing the price of biofuel or chemicals produced from lignocellulosic materials. A glucose and xylose co-utilizing Saccharomyces cerevisiae was obtained through rational genetic manipulation. Non-rational evolution in xylose was performed, and the xylose utilization efficiency of the engineered strain was significantly enhanced. The results of transcriptome study suggested that Snf1/Mig1-mediated regulation, a part of glucose sensing and repression network, was altered in the evolved strain and might be related to the enhancement of xylose utilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.