Abstract

BackgroundIntegrated management of hemicellulosic fraction and its economical transformation to value-added products is the key driver towards sustainable lignocellulosic biorefineries. In this aspect, microbial cell factories are harnessed for the sustainable production of commercially viable biochemicals by valorising C5 and C6 sugars generated from agro-industrial waste. However, in the terrestrial ecosystem, microbial systems can efficiently consume glucose. On the contrary, pentose sugars are less preferred carbon source as most of the microbes lack metabolic pathway for their utilization. The effective utilization of both pentose and hexose sugars is key for economical biorefinery.ResultsBioprospecting the food waste and selective enrichment on xylose-rich medium led to screening and isolation of yeast which was phylogenetically identified as Pichia fermentans. The newly isolated xylose assimilating yeast was explored for xylitol production. The wild type strain robustly grew on xylose and produced xylitol with > 40% conversion yield. Chemical mutagenesis of isolated yeast with ethyl methanesulphonate (EMS) yielded seven mutants. The mutant obtained after 15 min EMS exposure, exhibited best xylose bioconversion efficiency. This mutant under shake flask conditions produced maximum xylitol titer and yield of 34.0 g/L and 0.68 g/g, respectively. However, under the same conditions, the control wild type strain accumulated 27.0 g/L xylitol with a conversion yield of 0.45 g/g. Improved performance of the mutant was attributed to 34.6% activity enhancement in xylose reductase with simultaneous reduction of xylitol dehydrogenase activity by 22.9%. Later, the culture medium was optimized using statistical design and validated at shake flask and bioreactor level. Bioreactor studies affirmed the competence of the mutant for xylitol accumulation. The xylitol titer and yield obtained with pure xylose were 98.9 g/L and 0.67 g/g, respectively. In comparison, xylitol produced using non-detoxified xylose rich pre-hydrolysate from sugarcane bagasse was 79.0 g/L with an overall yield of 0.54 g/g.ConclusionThis study demonstrates the potential of newly isolated P. fermentans in successfully valorising the hemicellulosic fraction for the sustainable xylitol production.

Highlights

  • Integrated management of hemicellulosic fraction and its economical transformation to value-added products is the key driver towards sustainable lignocellulosic biorefineries

  • Shake flask studies for assessing xylitol production ability of P. fermentans The isolated yeast strain was examined for its ability to assimilate xylose and further fermenting it to xylitol

  • When P. fermentans was grown on pure xylose, there was rapid consumption of xylose and nearly the entire xylose was depleted in 48 h with a concomitant rise in cell growth (Fig. 1c)

Read more

Summary

Introduction

Integrated management of hemicellulosic fraction and its economical transformation to value-added products is the key driver towards sustainable lignocellulosic biorefineries. As opposed to lignin which is a complex heterogeneous polymer, cellulosic and hemicellulosic fractions are more lucrative options for valorization These structural polysaccharides form the largest fraction of the total biomass and provide a sugar platform upon depolymerization, which can be later transformed into a range of commercially important bio-renewable products [2, 3]. The remit of LBNet has been broadened with a new name as BBNet (Biomass and Biorefinery Network) with the aim to build a dynamic community of industrial and academic partners, to develop sustainable routes for the transformation of non-food biomass into fuels, chemicals and materials The government bodies such as Biotechnology and Biological Sciences Research Council (BBSRC) is empowering the industrial biotechnology and bioenergy concept and bringing the industry-academia conglomeration to convert renewable raw material to value-added products [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call