Abstract
Due to the advantages of Electrocardiogram (ECG) signals, which are challenging to replicate yet easy to get, ECG-based identification has become a new path in biometric recognition research. These classic feature extraction techniques require Hand-crafted or feature-specific implications. The methods used for selection and integration of features, are time-consuming. The main objective of this study is develop deep learning approach to study the features of ECG data digital characteristics, thus saving a lot of signal pre-processing steps. This research proposed novel technique in X-wave recognition of ECG signal using max-min threshold technique and classification of ECG signal. This signal has been processed for noise removal and normalization. Then this processed signal has been used to recognize X-wave from ECG signal. From recognized X-wave, the ECG signal has been classified using Improved Support Vector Machine (ISVM). The QRS complex has been detected using Stacked Auto-Encoder with Neural Networks (SAENN). The study took raw ECG signals and entropy-based features evaluated from extracted QRS complexes. Exams are based on classifying heart disorders into two, five, and twenty classes. The experimental findings showed that our suggested model attained a high classification accuracy of 97%, precision of 89%, recall of 90%, F-1 score of 88%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.