Abstract

The fine timing measurement (FTM) protocol is designed to determine precise ranging between Wi-Fi devices using round-trip time (RTT) measurements. However, the multipath propagation of radio waves generates inaccurate timing information, degrading the ranging performance. In this study, we use a neural network (NN) to adaptively learn the unique measurement patterns observed at different indoor environments and produce enhanced ranging outputs from raw FTM measurements. Moreover, the NN is trained based on an unsupervised learning framework, using the naturally accumulated sensor data acquired from users accessing location services. Therefore, the effort involved in collecting training data is significantly minimized. The experimental results verified that the collection of unlabeled data for a short duration is sufficient to learn the pattern in raw FTM measurements and produce improved ranging results. The proposed method reduced the errors in raw distance measurements and well-calibrated ranging results requiring the collection of ground truth data by 47–50% and 17–29%, respectively. Consequently, positioning errors were reduced by 17–30% compared to the well-calibrated ranging scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.