Abstract

In the present study, we addressed the imperative for potent anticancer agents through Wedelia chinensis, a medicinal plant abundant in the robust antihepatotoxic and antitumor compound wedelolactone. Hindrances in conventional propagation methods due to cross-pollination and habitat degradation prompted us to pioneer in vitro rapid multiplication using plant tissue culture. Optimal outcomes were attained employing Murashige and Skoog (MS) medium supplemented with Indole-3-butyric acid (IBA) (0.5 mg/L) and Kinetin (KN) (5.0 mg/L), yielding 97.67% shoot regeneration and 81.67% rooting from nodal explants. Transplanted plantlets exhibited a 92% survival rate. We established a wedelolactone extraction protocol using toluene:ethyl acetate:formic acid (5:4:1) for High-performance thin-layer chromatography (HPTLC) analysis, trailblazing wedelolactone quantification and 2C DNA analysis in W. chinensis via flow cytometry. Experiments under heavy metal stress with CuSO4 unveiled physiological responses, with peak wedelolactone content [193.90 μg/g dry weight (dw)] in vitro at 75 μM CuSO4, surpassing in vivo levels (89.95 μg/g dw) by 116%. By pioneering successful in vitro rapid multiplication and enhanced wedelolactone content, we bridge a critical gap in the conservation and production of this medicinal plant. Our findings not only offer a sustainable means of propagation but also present a viable strategy for elevating the yield of potent bioactive molecules like wedelolactone, holding immense promise for the development of novel therapeutic interventions and addressing the pressing healthcare challenges of our time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call