Abstract

Spontaneous and directional water transportation (SDWT) is considered as an ideal water transportation method and has a great prospect in the aerospace and ship fields. Nonetheless, the existing SDWT has the limitation of a slow water transportation velocity because of its geometry structure configuration, which hinders the practical application of the SDWT. To overcome this limitation, we developed a new superhydrophilic serial cycloid-shaped pattern (SSCP) which was inspired by the micro-cavity shape of the Nepenthes. First, we experimentally found that the water transportation velocity on the SSCP was faster than that on the superhydrophilic serial wedge-shaped pattern (SSWP) and analyzed the faster water transportation mechanism. Then, the influence of the SSCP parameters on the transportation velocity was investigated by a single-factor experiment. In addition, the water transportation velocity on the SSCP was enhanced to 289 mm s-1 by combining the single-factor experiment, orthogonal optimization design, streamline junction transition optimization, and pre-wet pattern, which was the fastest in the SDWT. Moreover, the SSCP demonstrated its superior capability in long-distance water transportation, gravity resistant water transportation, heat transfer, and fog collection. This finding shows remarkable application prospects in the high-performance fluid transportation system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.