Abstract

Lake surface water temperature (LSWT) is sensitive to climate change. Previous studies have found that LSWT warming is occurring on a global scale and is expected to continue in the future. Recently, new global LSWT data products have been generated using satellite remote sensing, which provides an inimitable opportunity to study the LSWT response to global warming. Based on the satellite observations, we found that the warming rate of global lakes is uneven, with apparent regional differences. Indeed, comparing the LSWT warming in different climate zones (from arid to humid), the lakes in drylands experienced more significant warming (0.28 °C decade−1) than those in semi-humid and humid regions (0.19 °C decade−1) during previous decades (1995–2016). By further quantifying the impact factors, it showed that the LSWT warming is attributed to air temperature (74.4%), evaporation (4.1%), wind (9.9%), cloudiness (4.3%), net shortwave (3.1%), and net longwave (4.0%) over the lake surface. Air temperature is the main driving force for the warming of most global lakes, so the first estimate quantification of future LSWT trends can be determined from air temperature projections. By the end of the 21st century, the summer air temperature would warm up to 1.0 °C (SSP1-2.6) and 6.3 °C (SSP5-8.5) over lakes, with a more significant warming trend over the dryland lakes. Combined with their higher warming sensitivity, the excess summer LSWT warming in drylands is expected to continue, which is of great significance because of their high relevance in these water-limited regions.

Highlights

  • IntroductionBy the end of the 21st century, the summer air temperature would warm up to 1.0 ◦ C (SSP1-2.6) and 6.3 ◦ C (SSP5-8.5) over lakes, with a more significant warming trend over the dryland lakes

  • Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 Trento, Italy; Physics of Aquatic Systems Laboratory (APHYS)-Margaretha Kamprad Chair, École Polytechnique Fédérale de Laussane, CH-1015 Lausanne, Switzerland

  • The trends in summer Lake surface water temperature (LSWT) for individual lakes range from -0.19 to 0.75 ◦ C decade−1 (GloboLakes, Figure 1b) and from −0.12 to 0.87 ◦ C decade−1 (GLTC, Figure 1c)

Read more

Summary

Introduction

By the end of the 21st century, the summer air temperature would warm up to 1.0 ◦ C (SSP1-2.6) and 6.3 ◦ C (SSP5-8.5) over lakes, with a more significant warming trend over the dryland lakes Combined with their higher warming sensitivity, the excess summer LSWT warming in drylands is expected to continue, which is of great significance because of their high relevance in these water-limited regions. The warming of LSWT is expected to affect several physical, chemical, and biological processes in lakes, with consequences for their aquatic ecosystem and associated ecosystem services. These are hot issues in today’s research, which become relevant when fragile dryland environments are considered

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call