Abstract
In this article the ability of ultrahigh resolution ophthalmic optical coherence tomography (OCT) to image small choroidal blood vessels below the highly reflective and absorbing retinal pigment epithelium is demonstrated for the first time. A new light source (lambdac= 1050 nm, Deltalambda = 165 nm, Pout= 10 mW), based on a photonic crystal fiber pumped by a compact, self-starting Ti:Al2O3 laser has therefore been developed. Ex-vivo ultrahigh resolution OCT images of freshly excised pig retinas acquired with this light source demonstrate enhanced penetration into the choroid and better visualization of choroidal vessels as compared to tomograms acquired with a state-of-the art Ti:Al2O3 laser (Femtolasers Compact Pro, lc= 780 nm, Deltalambda= 160 nm, Pout= 400 mW), normally used in clinical studies for in vivo ultrahigh resolution ophthalmic OCT imaging. These results were also compared with retinal tomograms acquired with a novel, spectrally broadened fiber laser (MenloSystems, lambdac= 1350 nm, Deltalambda= 470 nm, Pout = 4 mW) permitting even greater penetration in the choroid. Due to high water absorption at longer wavelengths retinal OCT imaging at ~1300 nm may find applications in animal ophthalmic studies. Detection and follow-up of choroidal neovascularization improves early diagnosis of many retinal pathologies, e.g. age-related macular degeneration or diabetic retinopathy and can aid development of novel therapy approaches.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.