Abstract

The importance of electron concentration in rutile TiO2 photocatalysts motivated us to apply H2 reduction treatment to visible-light-responsive TiO2 photocatalysts sensitized by chromium ion doping. We found that H2 reduction treatment of rutile TiO2 particles codoped with Ta and Cr (TiO2:Ta/Cr) enhanced photocatalytic activity for O2 evolution by water oxidation under visible irradiation (>2.2 eV). The enhanced visible light activity of H2-treated TiO2:Ta/Cr was attributed to the increase of electron concentration, which was confirmed by UV–vis diffuse reflectance and electron spin resonance (ESR) spectroscopy. The H2-treated TiO2:Ta/Cr photocatalyst was repeatedly used in aqueous media in spite of the presence of doped electrons. Photoluminescence and transient absorption spectroscopies revealed that electron doping with H2 treatment decreased the midgap states working as deep traps of photoexcited electrons and increased the accumulation of the photoexcited electrons in the conduction band. The optimiz...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.