Abstract
Mesoporous TiO2 frameworks incorporated with diverse percentages of Cr2O3 nanoparticles (NPs) were achieved through the one-step sol-gel approach for photocatalytic H2 evolution under visible-light exposure. The obtained isotherms could be classified as type IV, indicating mesopore 2D-hexagonal symmetry. The H2 evolution rate over mesoporous Cr2O3/TiO2 photocatalyst was observably promoted employing glycerol as a sacrificial agent, providing a comparatively high H2 yield of 14300 μmolg−1. The highest photocatalytic efficiency was achieved with an optimal 4% Cr2O3/TiO2 photocatalyst, and the evolution rate was enhanced 1430-fold compared to pristine TiO2. The eminent photocatalytic performance of mesoporous Cr2O3/TiO2 was ascribable to different key factors such as the narrow bandgap, wide visible light photoresponse, Cr2O3 as photosensitizer, synergistic effect and high surface area. The recycle tests for five times over synthesized photocatalyst revealed excellent durability and stability without loss in H2 evolution. The photocatalytic mechanisms for H2 evolution over Cr2O3/TiO2 photocatalyst were proposed according to the photocurrent transient and photoluminescence measurements and photocatalytic H2 evolution results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.